Heat Transfer

Transient Heat
Conduction

Heat Transfer by R P Kakde

1

Unit II

 Transient Heat Conduction- When heat transfer takes place from a body/ material, its temp changes. When temp of the body is function (fn) of location \& time i,e. $\mathrm{T}(\mathrm{x}, \mathrm{t})$, heat transfer process is called under Unsteady state conditions.
- When heat energy flows in or out of a body, its internal energy increases or decreases, which is indicated by increase or decrease in its temp. When temp of the body is a fn of time, heat transfer process is known to be taking place under Transient conditions.

Heat Transfer by R P Kakde

Unit II
Transient Heat Conduction

Heat Transfer by R P Kakde
2

Unit II
- Rate of heat transfer depends on temp
gradient, and since temp changes with time,
heat flow rate also changes with time
continuously.
- Under transient conditions, characteristic
equation for heat flow can be written as:
Rate of heat flow out Q=Rate of change of internal energy of the substance $=-m C_{p}$ dT/dt
-When heat flows out from a body, its surface temp changes. Thus a temp gradient is established from centre of the body to the Surface

Unit II
Transient Heat Conduction

- Generally, two types of problems are encountered:

1. When body has negligible internal temp gradient
(ITG) < 5\%
2. When body has considerable ITG (>5\%)

- To decide whether ITG is $<5 \%$ (can be neglected)? Here, Biot No is defined. Bi No is measure of ITG
- If Biot $\mathrm{No}(\mathrm{Bi})$ is <0.1; then ITG will be $<5 \%$

$$
\begin{aligned}
& B i=\frac{h L}{k}=\frac{h L \cdot A}{k \cdot A}=\frac{\frac{L}{k A}}{\frac{1}{h A}} \\
& =\quad \text { Conductive Resistance of the object }
\end{aligned}
$$

$$
=\overline{\text { Convective Resistance at the surface of Object }}
$$

Heat Transfer by R P Kakde

Characteristic Lengths:

Sphere: $L=\frac{\frac{4}{3} \pi R^{3}}{4 \pi R^{2}}=\frac{R}{3} ; \quad R=$ Radius of Sphere

Cylinder $\quad L=\frac{\pi R^{2} L}{2 \pi R L}=\frac{R}{2} ; R=$ Radius of Cylinder

$$
\begin{array}{ll}
\text { Cube } & L=\frac{l^{3}}{6 l^{2}}=\frac{l}{6} ; \quad l=\text { Length of Cube } \\
\text { Plate } & L=\frac{A \Delta x}{2 A}=\frac{\Delta x}{2} ; \quad \Delta x=\text { Thickness of Plate }
\end{array}
$$

Heat Transfer by R P Kakde

- Another Dimensionless Number utilized in transient heat transfer conditions is Fourier's No (Fo)

Fo is dimensionless time, which is a measure of heat conduction compared to heat storage of a body
$F o=\frac{k}{\rho C_{p}} \frac{t}{L^{2}}=\frac{\text { Heat Conduction }}{\text { Heat Storage with Time }}$

Where L is characteristic length of the object/body and given as:
$\mathrm{L}=\mathrm{V} / \mathrm{A}$; where V is the volume of the body and A is the surface area of the body

Heat Transfer by R P Kakde
6

Unit II
Transient Heat Conduction

Practical Examples of Unsteady State Heat Transfer

1. Heat treatment of metals
2. Starting and shutting down of any Heat Transfer equipment like Lab Equipment
3. Starting \& shutting down of engines/motors
4. Starting \& shutting down of Electric Furnace
5. Starting \& shutting down of Electric heater

Unit II

Transient Heat Conduction

Quenching of Billet by Lumped Heat Capacity Method (For
Heat Treatment)

- Consider a solid of volume

V and surface area A , initially at temp T_{i}, suddenly placed in a fluid at temp $T_{\infty}\left(T_{i}>T_{\infty}\right)$

- Lumped heat capacity
of the solid will be $\mathrm{mC}_{\mathrm{p}}=\rho \mathrm{VC}_{\mathrm{p}}$.
(Lump of heat energy is the heat required to raise/lower temp of mass m by 1°)

Heat Transfer by R P Kakde

$$
-\rho V C_{p} \cdot \frac{d \theta}{d t}=h A \theta ; \quad \text { OR } \quad \frac{d \theta}{\theta}=\frac{-h A}{\rho C_{p} V} . d t
$$

Integrating, We have: $\ln \theta=-\frac{h A}{\rho C_{p} V} \cdot t+C ;$
where C is Const of integration

Initial Conditions : At $t=0 ; T=T_{i}$;
hence $\theta=\theta_{i}=\left(T_{i}-T_{\infty}\right)$
$\Rightarrow C=\ln \theta$
Heat Transfer by R P Kakde

Unit II
Transient Heat Conduction

- Heat flow from billet surface
of area A at any time t can
be given as:
$Q=-m C_{p} \frac{d T}{d t}=-\rho V C_{p} \frac{d T}{d t}=h A\left(T-T_{\infty}\right)$
- Putting $\Theta=T-T_{\infty}$, the excess temp of solid above fluid, equation becomes:

$$
-\rho V C_{p} \cdot \frac{d \theta}{d t}=h A \theta
$$

Heat Transfer by R P Kakde
Unit II
Hence $\ln \theta=-\frac{h A}{\rho C_{p} V} \cdot t+\ln \theta_{i}$
$\Rightarrow \ln \left(\frac{\theta}{\theta_{i}}\right)=-\frac{h A}{\rho C_{p} V} \cdot t$
$\Rightarrow \frac{\theta}{\theta_{i}}=\frac{T-T_{\infty}}{T_{i}-T_{\infty}}=e^{-\frac{h A}{\rho C_{p} V} \cdot t}$
Heat Transfer by RP Kakde Heat Conduction
Unit II
Now $\frac{h A}{\rho C_{p} V} \cdot t=\frac{h}{\rho C_{p} L} \cdot t \Rightarrow\left(\frac{h L}{k}\right)\left(\frac{k}{\rho C_{p} L^{2}} \cdot t\right)$
$=\left(\frac{h L}{k}\right)\left(\frac{\alpha}{L^{2}} \cdot t\right)=B i . F o ;$ Hence $\Rightarrow \frac{\theta}{\theta_{i}}=e^{-B i . F o}$
For Plate of thickness $\quad \Delta x ; L=\frac{\Delta x}{2}$
$\left(\frac{h L}{k}\right)\left(\frac{\alpha . t}{L^{2}}\right)=\left(\frac{h \cdot \frac{\Delta x}{2}}{k}\right)\left(\frac{\alpha . t}{\left(\frac{\Delta x}{2}\right)^{2}}\right)=$ Bi.Fo
HHeat Transfer by RP Kakde

13

Unit II	Transient Heat Conduction (10)
1. For Plate $\Rightarrow \quad \frac{\theta}{\theta_{i}}=e^{-B i . F o}$	
2. For Cylinder $\Rightarrow \quad \frac{\theta}{\theta_{i}}=e^{-2 B i F o}$	
3. For Sphere $\Rightarrow \quad \frac{\theta}{\theta_{i}}=e^{-3 \text { BiFo }}$	
4. For Cube of side $L \Rightarrow \frac{\theta}{\theta_{i}}=e^{-6 \text { BiFo }}$	

Unit II
Transient Heat Conduction

Instantaneous Rate of Heat Transfer

Instantaneous heat flow rate:

$$
Q=h \cdot A\left(T-T_{\infty}\right) \text { and } \quad \frac{T-T_{\infty}}{T_{i}-T_{\infty}}=e^{-\frac{h A}{\rho c_{p} \nu^{\prime}} \cdot t}
$$

Hence $Q=h \cdot A\left[\left(T_{i}-T_{\infty}\right) \cdot e^{-\left(\frac{h \cdot A}{\rho \cdot C_{p} \cdot V}\right) \cdot t}\right]$

Heat Transfer by R P Kakde

Unit II

If we define a term Time Constant as $\tau=\frac{\rho C_{p} V}{h A}$
Then $\Rightarrow \frac{\theta}{\theta_{i}}=e^{-\frac{t}{\tau}}=\frac{1}{e^{\frac{t}{\tau}}}$
For $\theta \rightarrow 0 ; \quad \tau$ should be as small as possible
For convenience if we put $\frac{t}{\tau}=\frac{h A . t}{\rho C_{p} V}=1$

$$
\begin{aligned}
& \text { Then } \Rightarrow \frac{\theta}{\theta_{i}}=e^{-1}=0.368 \\
& \text { Hence } \quad \theta=0.368 \theta_{i}
\end{aligned}
$$

Heat Transfer by R P Kakde

Hence $\quad \theta=0.368 \theta_{i}$

- Therefore, time required by the thermocouple to achieve 63.2% of initial temp difference, is called Time Constant of Thermocouple
- Time Constant should be as small as possible for better response of thermocouple

